Criteria 3- Research, Innovations and Extension

Key Indicators 3.3- Number of Publications
3.3.2 Number of books and chapters in edited volumes/books published and papers published in national/ international conference proceedings per teacher during the last five years

Copies of Chapter/Books

2021-2022

$5^{\text {th }}$ International Conference on Mathematical Methods and Computation (ICOMAC - 2019), February 20-21, 2019.

Organised by:
PG \& Research Department of Mathematics, Jamal Mohamed College (Autonomous), Tiruchirappalli, Tamil Nadu, India

American International Journal of Research in Science, Technology, Engineering \& Mathematics

T E

Special Issue:
$5^{\text {th }}$ International Conference on Mathematical Methods and Computation (ICOMAC - 2019), February 20-21, 2019

Organised by:
PG \& Research Department of Mathematics, Jamal Mohamed College(Autonomous), No. 7 Race Course Road, Khaja Nagar, Tiruchirappalli620 020, Tamil Nadu, INDIA

American International Jōurnall of Research in Science, Technology, Engineening \& Mathematics

International Association of Scientific Innovation and Reseaigcatullé 『dRjerified
(An Association Unifying the Sciences, Engineering, and Applied Researgh)LASUNDAPAM VANI STEM International Scientific Online Media and Publishing House Head Office: 148, Summit Drive, Byron, Georgia-31008, United Sferfeb:20241p:42

Offices Overseas: Germany, Australia, India, Netherlands, Canada.
Website: www.iasir.net, E-mail (s): iasir.journals@iasir.net, iasir.journals@gmail.com, aijrstem@gmail.com

ICOMAC 19-121	A Framework of the Deployment of Security Services in Microsoft Azure Cloud Environment D. I. George Amalarethinam and H. M. Leena	317-323
ICOMAC 19-126	Fuzzy Edge Graceful Labeling on Wheel Graph, Fan Graph and Friendship Graph A. Nagoor gani, B. Fathima Kani and M.S. Afya Farhana	324-329
ICOMAC 19-128	Ed Process and Edf Method on Natural, Whole and Integer Sequences. P.Muruganantham and K.Dineshkumar	330-335
ICOMAC 19-130	Distance Coprime Digraphs B Vijayalakshmi and Asha Sebastian	336-340
ICOMAC 19-131	Study on Energy of Connected Graphs on Six Vertices B .Vijayalakshmi. and D.Daisy Benjamin	341-346
ICOMAC 19-134	Solving the Fuzzy Linear Complementarity Problem by Modified Index Method A. Nagoor Gani and C. Arun Kumar	347-353
ICOMAC 19-136	Determinant For Non-Square Fuzzy Matrices With Compatible Norm A. Nagoor Gani and A.Pappa	354-359
ICOMAC 19-137	Unsteady Magneto Hydrodynamics Thermo Bioconvection of a Nanofluid A.Rameshkumar and L.Aro Jeba Stanly	360-367
ICOMAC 19-138	Single Server Non-Markovian Bulk Arrival Queue with Optional Service P. Manoharan, N. Thillaigovindan and R. Kalyanaraman	368-372
ICOMAC 19-139	Mathematical Modelling And Simulation of Blood Flow Considering Shear Rate Dependent Viscosity Through Arterial Stenosis in Presence of Magnetic Field Salma Parvin and Afroza Akter	373-379
ICOMAC 19-140	Optimal Joint Total Cost of an Integrated Supply Chain Model for Inventory Items with backorder using yager ranking method M. Maragatham, R. Ananthi and J. Jayanthi	380-390 erified VANI

Determinant for Non-Square Fuzzy Matrices with Compatible Norm

A. Nagoor Gani ${ }^{1}$ and A. Pappa ${ }^{2}$
${ }^{1}$ P.G and Research Department of Mathematics,Jamal Mohamed College (Autonomous), Tiruchirappalli-620 020, INDIA
${ }^{2}$ Department of Mathematics, AIMAN College of Arts and Science for Women, Tiruchirappalli-620 021, INDIA

Abstract

In this paper Determinant for Non-Square Fuzzzy Matrices and its properties are studied. Using elementary operations. Some important algebraic properties of addition, Scalar Multiplication of Determinant for Non-Square Fuzzzy Matrices are discussed. A new compatible Norm \|. \|c is defined and special type of Non-Square Fuzzy Matrix multiplication are used.

Keywords: Fuzzy Matrix $\mathcal{F}_{m m}$, Determinant for Non-Square Fuzzy Matrices (NSFM), compatible Matrices, compatible Norm\|. \|c.

2010 AMS Subject Classification: 03E72, 15A15, 15A60

I. Introduction

The concept of Fuzzy set was introduced by Zadeh [8] A.Arunkumar, S.Murthy, G.Ganapathy [1] introduced Determinant For Non-Square Fuzzy Matrices. In 1995 Ragab.M.Z and Eman [2] introduced the determinant and adjoint of Square Fuzzy Matrices. Nagoorgani.A and Kalyani.G.[3] Introduced the Binormed sequences in fuzzy matrices .Nagoorgani A. and Manikandan A.R. [4] Introduced on Fuzzy Determinant norm Matrices. AR.Meenakshi [5] introduced some concept of matrices theory and applications in Fuzzy Matrices. Dennis .Bernstein [6] introduced compatible norm in Matrix Mathematics Theory, Facts and Formulas. A.K. Shymal and Madhumangal Pal [7] properties of triangular Fuzzy matrices. In this paper, the Concept NSFM with Compatible norm is discussed. In section 1, some basic definitions and properties are given. In section 3, the purpose of introduction Determinant for NSFM are explained in $\mathcal{F}_{m m}$. In section 4, some properties of NSFM are given .In section 5, compatible norm used for two NSFM multiplication.

II. Preliminaries

We consider $\mathcal{F}=[0,1]$ the fuzzy algebra with operator $[+, \cdot]$ and the standard order ${ }^{\text {* }} \leq$ " where
$a+b=\max \{a, b\}, a \cdot b=\min \{a, b\}$ for all a, b in $\mathcal{F} . \mathcal{F}$ is a commutative semiring with additive and multiplicative identities 0 and 1 respectively. Let $\mathcal{F}_{m m}$ denote the set of all $m \times m$ NSFM over $\mathcal{F}_{m m}$. In short $\mathcal{F}_{m m}$ is the set of NSFM of orderm $\times m$ define " + " and Scalar Multiplication in $\mathcal{F}_{m m}$ as $A+B=\left[a_{i j}+b_{i j}\right]$ where $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ and $c A=\left[c a_{i j}\right]$
where c is in $[0,1]$ with these operations $\mathcal{F}_{m m}$ Forms a linear space. NSFM Multiplication is number of column in the first Matrix must be equal to the number of rows in the second matrix with these operations $\mathcal{F}_{m m}$ forms a linear space.

III. Determinant For Non-Square Fuzzy Matrices

(i) Definition :

An $m \times m$ matrix $A=\left[a_{i j}\right]$ whose components are in the unit interval $[0,1]$ is called fuzzy matrix.

(ii) Definition :

The determinant $|A|$ of an $m \times m$ fuzzy matrix A is defined as follows; $|A|=\sum_{\sigma \in S_{n}} \mathrm{a}_{1 \sigma(1)} \mathrm{a}_{2 \sigma(2)} \ldots \mathrm{a}_{\mathrm{n} \sigma(\mathrm{n})} \quad$ Where Sn denotes the symmetric group of all permutations of the indices ($1,2 \ldots . n$).

(iii) Definition :

A Non-Square fuzzy matrix [NSFM] $A=\left[a_{i j}\right]$ of order $m \times m$ over $\mathcal{F}_{m m}$ If $m>m$ then the matrix A is called horizontal Non-Square fuzzy matrix. Otherwise A is called Vertical Non Square fuzzy matrix. Signature Not Verified

(iv) Definition :

To every Non-Square fuzzy matrix [NSFM] $A=\left[a_{i j}\right]$ of order $m \times m$ over $\mathcal{F}_{m m}$ with entries as unit interval [0,1] Determinant $|A|$ of $m \times m$ over $\mathcal{F}_{m m}$ fuzzy matrix A is defined as follows. $|A|=\sum_{\sigma \in S_{\mathrm{n}}} \mathrm{a}_{1 \sigma(1)} \mathrm{a}_{2 \sigma(2)} \ldots \mathrm{a}_{\mathrm{mo(n})}$ (where Sn denotes $m m$).
Case(i): If $A=\left[\begin{array}{lllll}a_{11} & a_{12} & a_{13} & \ldots & a_{1 n}\end{array}\right]$ then its $|A|=a_{11} \quad a_{12} \quad a_{13} \ldots . a_{1 n}=\sum_{i=1}^{n} a_{1 \mathrm{i}}$
Case (ii):
If $\mathrm{A}=\left[\begin{array}{c}a_{21} \\ \ldots\end{array}\right]$ then its $|A|=a_{11} \quad a_{21} \quad \ldots . a_{m 1}=\sum_{i=1}^{m} a_{i 1}$

$$
a_{m 1}
$$

Case (iv):
If $\mathrm{A}=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ then its $|A|=\sum^{m-1} \sum^{m} \quad \left\lvert\, \begin{array}{ll}a_{i 1} & a_{i 2}\end{array}\right.$
$a_{m 1} \quad a_{m 2}$
(v) Definition :

The NSFM $|A|=\left[a_{i j}\right]$ be the order $m \times m$ over $\mathcal{F}_{m m}$.If the order $m \times m \geq 3$.The minor of arbitrary element a_{ij} is the determinant of the value.
(vi) Definition : Non Square fuzzy matrices of minor:

The NSFM A= $\left(a_{i j}\right)$ be the order of $m \times m$ over $\mathcal{F}_{m m}$. The minor of an element aij in
$\operatorname{det}|A|$ is the order $(m-1) \times(n-1)$. NSFM formed by deleting i-th row and the j -th column from $A=\left(a_{i j}\right)$ denoted by $M_{i j}$.
(vii) Definition : Cofactor:

The NSFM $A=\left(a_{i j}\right)$ be the order of $m \times m$ over $\mathcal{F}_{m m}$. The Cofactor of an element $a_{i j}$ is denoted by $A_{i j}$ and is defined as $A_{i j}=(1)^{\mathrm{i}+\mathrm{j}} M_{i j}$.
(viii) Definition :

Let $\left.A=\begin{array}{rrrrr}a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\ a_{21} & a_{22} & a_{23} & \ldots & a_{2 n}\end{array}\right]$ then its
Determinant is defined
$|A|=a_{11} M_{11}+a_{12} M_{12}+\ldots .+a_{1 n} M_{1 n}$
$|A|=\sum_{\mathrm{i}=1}^{\mathrm{n}} a_{1 i} M_{1 i}$.
(ix) Definition :

Let $A=\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ a_{22} & a_{23} \\ \ldots & \ldots & \ldots \\ \mathrm{a}_{\mathrm{m} 1} & \mathrm{a}_{\mathrm{m} 2} & \mathrm{a}_{\mathrm{m} 3}\end{array}\right]$
$|A|=a_{11} M_{11}+a_{21} M_{21}+\ldots .+a_{m 1} M_{m 1}$
$|A|=\sum_{\mathrm{i}=1}^{\mathrm{m}} a_{i 1} M_{i 1}$.

(x) Theorem :

The value of the NSFM determinant $|\mathrm{A}|=\left(\mathrm{a}_{i j}\right)$ be the order $m \times m$ over $\mathcal{F}_{m m}$ unchanged. When we interchanged rows into columns and columns into rows that is $|A|=\left|A^{T}\right|$ for any Non-Square Fuzzy matrix A.

Proof:
Consider the Matrix A = $\left.\begin{array}{rlll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34}\end{array}\right]$

$$
\begin{aligned}
& \text { By the definition (viii) of }|A| \text { we have } \\
& |A|=a_{11} M_{1} \mathrm{a}_{22}+a_{\mathrm{an}_{23} M_{12}}+\mathrm{a}_{2} q_{13} M_{12}+a_{14} M_{14} \\
& \begin{array}{c}
\text { a11\{| } \\
+a_{32} \\
a_{33} \\
\left\{\left|\begin{array}{lll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+\left|\begin{array}{ll}
a_{32} & a_{34}
\end{array}\right|+\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{23} \\
a_{33} & a_{24}
\end{array}\right|+\left\lvert\, \begin{array}{ll}
a_{23} & a_{24} \\
a_{33} & a_{34}
\end{array}\right.\right\}
\end{array} \\
& +\mathrm{a}_{13}\left\{\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+\left|\begin{array}{ll}
a_{21} & a_{24} \\
a_{31} & a_{34}
\end{array}\right|+\left\lvert\, \begin{array}{ll}
a_{22} & a_{24} \\
a_{32} & a_{34}
\end{array}\right.\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +\mathrm{a}_{14}\left\{\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}+\left.\right|_{a_{21}} ^{a_{21}} \begin{array}{l}
a_{23} \\
a_{33}
\end{array}\left|+\left.\right|_{a_{32}} ^{a_{22}} \quad a_{23}\right|\right\} \\
& =a_{11}\left\{\left(a_{22} a_{33}+a_{23} a_{32}\right)+\left(a_{22} a_{34}+a_{24} a_{32}\right)+\left(a_{23} a_{34}+a_{24} a_{33}\right)\right\}+a_{12}\left\{\left(a_{21} a_{33}+a_{23} a_{31}\right)+\right. \\
& \left.\left(a_{21} a_{34}+a_{24} a_{31}\right)+\left(a_{23} a_{34}+a_{24} a_{33}\right)\right\}+a_{13}\left\{\left(a_{21} a_{33}+a_{23} a_{31}\right)+\left(a_{21} a_{34}+a_{31} a_{24}\right)+\right. \\
& \left.\left(a_{22} a_{34}+a_{24} a_{32}\right)\right\}+a_{14}\left\{\left(a_{21} a_{32}+a_{31} a_{22}\right)+\left(a_{21} a_{33}+a_{31} a_{23}\right)+\left(a_{22} a_{33}+a_{23} a_{32}\right)\right\}
\end{aligned}
$$

Let us interchange the rows and columns of A we have

$$
\left|A^{T}\right|=\left[\begin{array}{lll}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32} \\
a_{13} & a_{23} & a_{33} \\
a_{14} & a_{24} & a_{34}
\end{array}\right.
$$

By the definition (ix) as defined we have

$$
\begin{align*}
& =a_{11} M_{11}+a_{21} M_{21}+a_{31} M_{31}+a_{41} M_{41} \\
& =a_{11}\left\{\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+\left|\begin{array}{ll}
a_{22} & a_{24} \\
a_{32} & a_{34}
\end{array}\right|+\left|\begin{array}{ll}
a_{23} & a_{24} \\
a_{33} & a_{34}
\end{array}\right|\right\} \\
& +a \quad\left\{\left.\right|_{12} ^{a_{21}} \begin{array}{ll}
a_{31} & a_{33}
\end{array}\left|+\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+\left|\begin{array}{ll}
a_{23} & a_{24} \\
a_{33} & a_{34}
\end{array}\right|\right\}\right. \\
& +a_{13}\left\{\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+\left|\begin{array}{ll}
a_{21} & a_{24} \\
a_{31} & a_{34}
\end{array}\right|+\left|\begin{array}{ll}
a_{22} & a_{24} \\
a_{32} & a_{34}
\end{array}\right|\right\} \\
& +a_{14}\left\{\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|+\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|\right\} \\
& =a_{11}\left\{\left(a_{22} a_{33}+a_{23} a_{32}\right)+\left(a_{22} a_{34}+a_{24} a_{32}\right)+\left(a_{23} a_{34}+a_{24} a_{33}\right)\right\}+a_{12}\left\{\left(a_{21} a_{33}+a_{23} a_{31}\right)+\right. \\
& \left.\left(a_{21} a_{34}+a_{24} a_{31}\right)+\left(a_{23} a_{34}+a_{24} a_{33}\right)\right\}+a_{13}\left\{\left(a_{21} a_{33}+a_{23} a_{31}\right)+\left(a_{21} a_{34}+a_{31} a_{24}\right)+\right. \\
& \left.\left(a_{22} a_{34}+a_{24} a_{32}\right)\right\}+a_{14}\left\{\left(a_{21} a_{32}+a_{31} a_{22}\right)+\left(a_{21} a_{33}+a_{31} a_{23}\right)+\left(a_{22} a_{33}+a_{23} a_{32}\right)\right\} . \tag{2}
\end{align*}
$$

From equation (1) and (2) we obtain proof of the theorem.

(A). Example :

$\begin{array}{llll}0.5 & 0.0 & 0.4 & 0.6\end{array}$
If $A=\left[\begin{array}{llll}0.1 & 0.9 & 0.7 & 0.5\end{array}\right]$

$$
\begin{aligned}
& \left.\left.|A|={ }^{0.8} 0.5 \begin{array}{llll}
0.3 & 0.5 & 0.2 \\
0.9 & 0.7 \\
0.3 & 0.5
\end{array}\left|+\left.\right|_{0.9} ^{0.9} \begin{array}{ll}
0.5 \\
0.3 & 0.2
\end{array}\right|+\left.\right|_{0.5} ^{0.7} \begin{array}{ll}
0.5 \\
0.5 & 0.2
\end{array} \right\rvert\,\right\} \\
& +0.0\left\{\left.\right|_{0.8} ^{0.1} \quad 0.7\left|+\left.\right|_{0.8} ^{0.1} \quad 0.51+\left.\right|_{0.2} ^{0.7} \quad 0.5\right|\right\} \\
& +0.4\left\{\left|\begin{array}{ll}
0.1 & 0.9 \\
0.8 & 0.3
\end{array}\right|+\left.\right|_{0.8} ^{0.1} \quad 0.5\left|+\left.\right|_{0.2} ^{0.9} \begin{array}{ll}
0.5 & 0.5 \\
0.3 & 0.2
\end{array}\right|\right\} \\
& +0.6\left\{\left.\left.\right|_{0.8} ^{0.1} \begin{array}{ll}
0.9 \\
0.8 & 0.3
\end{array}\left|+\left.\right|_{0.8} ^{0.1} \begin{array}{ll}
0.7 \\
0.3
\end{array}\right|+\left.\right|_{0.3} ^{0.9} \begin{array}{ll}
0.7 & 0.5
\end{array} \right\rvert\,\right\}
\end{aligned}
$$

$|A|=0.6$.
In a similarily we prove the following properties:
(xi) Theorem :

If any two rows of horizontal NSFM determinant be the order $m \times m$ over $\mathcal{F}_{m m}$ are interchanged, then horizontal NSFM determinant numerical value is unaltered.

(xii) Theorem :

If any two coloumns of vertical NSFM determinant the order $m \times m$ over $\mathcal{F}_{m m}$ are interchanged, then vertical NSFM determinant numerical value is unaltered.

IV. Properties of Determinant for Non-Square Fuzzy Matrices

(xiii) Theorem :

For any three matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are NSFM of the same order $m \times m$ over $\mathcal{F}_{m m}$. The set $\mathcal{F}_{m m}$ is a fuzzy vector space under the operations defined as $\mathrm{A}+\mathrm{B}=\left(\max \left\{a_{i j}, b_{i j}\right\}\right), \mathrm{A}+\mathrm{B}+\mathrm{C}=\max \left(a_{i j}, b_{i j}, c_{i j}\right)$ and $\alpha \mathrm{A}=\min \left(\alpha, a_{i j}\right)$, $\beta \mathrm{B}=\min \left(\beta, b_{i j}\right)$. We have $|A|=\left[a_{i j}\right],|B|=\left[b_{i j}\right]$,
$|C|=\left[c_{i j}\right] \in \mathcal{F}_{m m}$ and $\alpha, \beta \in \mathcal{F}$.Since $\mathcal{F}=[0,1], \alpha, \beta$ in $[0,1]$ and $[\alpha+\beta]$ in $[0,1]$.

Proof:

For NSFM of $\mathrm{A}, \mathrm{B}, \mathrm{C} \in \mathcal{F}_{m m}$
Case (i): $|A+B|=|B+A| \quad$ (Commutative Property)
Case (ii): $|A+(B+C)|=|(A+B)+C| \quad$ (Associative Property)
Case (iii): $|A+B|=|A|+|B|,|A+B|^{\mathrm{T}}=|A|^{\mathrm{T}}+|B|^{\mathrm{T}}$
Case (iv): $|A+A|=|A|$
Case (v):For all NSFM of $\mathrm{A} \in \mathcal{F}_{m m}$, there exists an element $0 \in \mathcal{F}_{m m}$

$$
|A+0|=|A| \quad \text { (Universal bound) }
$$

Case (vi): For all NSFM of $\mathrm{A} \in \mathcal{F}_{m m}$, there exists an element $\mathrm{J} \in \mathcal{F}_{m m}$

$$
|A+J|=|J| \quad \text { (Universal bound) }
$$

Case (vii): $|\alpha A|=\alpha|A| \quad$ For any α in [0,1]
Case (viii): $|\alpha A|^{\mathrm{T}}=\alpha|A|^{\mathrm{T}} \quad$ For any α in [0,1]
Case (ix): $|\alpha(A+B)|=\alpha|A|+\alpha|B|$
For any α in $[0,1]$

$$
\begin{aligned}
|\alpha(A+B)| & =\mid \alpha A+\alpha B) \mid \\
& =|\alpha A|+|\alpha B| \\
& =\quad \alpha|A|+\alpha|B|
\end{aligned}
$$

Case (x): $|(\alpha+\beta) A|=\alpha|A|+\beta|A| \quad$ For all $\alpha+\beta$ in $[0,1]$

$$
|(\alpha+\beta) A|=|\alpha A+\beta A|
$$

$$
=|\alpha A|+|\beta A|
$$

$$
=\alpha|A|+\beta|A|
$$

Case (xi): $\alpha|\beta A|=\alpha \beta|A| \quad$ For any α, β in $[0,1]$

$$
\begin{aligned}
\alpha|\beta A| & =|\alpha \beta A| \\
& =\alpha \beta \mid A
\end{aligned}
$$

Case (xii):

$$
\begin{aligned}
|\alpha A+\beta B| T & =\alpha|A| T+\beta|B| T \quad \text { For all } \alpha+\beta \text { in }[0,1] \\
|\alpha A+\beta B| T & =|\alpha A| T+|\beta B| T \\
& =\alpha|A| T+\beta|B| T
\end{aligned}
$$

V. Determinant For Two Non-Square Fuzzy Matrix Multiplication

(xiv)Definition : (Compatible Non-Square Fuzzy Matrices):

Compatible Fuzzy Matrices which can be multiplayed for this to be possible, The number of columns in the first non-square Fuzzy Matrix must be equal to the number of rows in the second-square Fuzzy matrix must be equal to the number of rows in the second non-square Fuzzy Matrix (NSFM) .the product of $m \times p$ Non-square Fuzzy Matix and $p x m$ Non-Square fuzzy matrix has order $m \times m$ Non-square Fuzzy Matrix over $\mathcal{F}_{m m}$ we consider $\mathcal{F}=[0,1]$.
(xv) Definition : (Compatible norm \|. $\|_{\mathrm{c}}$):

Let $(\mathcal{F})_{m m}$ is the set of all $(m \times m)$ NSFM over $\mathcal{F}=[0,1]$. Define the norms $\|.\|_{c},\|.\|_{c},\left\|^{\prime} \cdot\right\|_{c}$ " on the order $m \times m, m \times \mathcal{p}, \mathcal{p} \times m$ over $\mathcal{F}_{m m}$ respectively, are compatible if for all $\mathrm{A} \in \mathcal{F}_{m p}$ and $\mathrm{B} \in \mathcal{F}_{p m}$. Then

$$
\|A B\|_{\mathrm{c}} \leq\|A\|_{\mathrm{c}^{\prime}}\|B\|_{\mathrm{c}}{ }^{\prime} .
$$

(xvi) Theorem :

If two NSFM satisfy the compatibility condition then the multiplication of these NSFM will either be square fuzzy matrix or Non-Square fuzzy matrix which depends up on rows and coloumns of the first and second NSFM respectively.

Proof:

We have $\|A\|_{\mathrm{c}}=\left[a_{i k}\right]$ and $\|B\|_{\mathrm{c}}=\left[b_{k j}\right]$ then $\|A B\|_{\mathrm{c}}=\sum_{j=1}^{n} a_{i k} b_{k j}$ where $a_{i k} b_{k j}=\min \left[a_{i k}, b_{k j}\right]$.
(xvii) Theorem :

If $\mathcal{F}_{m m}$ is the set of all $m \times m$ NSFM over $\mathrm{F}=[0,1]$ then for every A and B compatible in $\mathcal{F}_{m m}$ and any scalar α, β in $[0,1]$ we have
(i) $\|A\|_{\mathrm{c}} \geq 0$ and $\|A\|_{\mathrm{c}}=0$ if and only if $A=0$
(ii) $\|\alpha A\|_{\mathrm{c}}=\alpha\|A\|_{\mathrm{c}}$ for any α in $[0,1]$
(iii) $\|A B\|_{\mathrm{c}} \leq\|A\|_{\mathrm{c}}{ }^{\prime}\|B\|_{\mathrm{c}}{ }^{\prime \prime}$ for A, B in $\mathcal{F}_{m m}$
(iv) $\|A B\|_{\mathrm{c}}{ }^{\mathrm{T}} \leq\|B\|_{\mathrm{c}}{ }^{" \mathrm{~T}}\|A\|_{\mathrm{c}}{ }^{\text {T }}$ for A, B in $\mathcal{F}_{m m}$
(v) $\|\alpha(A B)\|_{c}=\|(\alpha A) B\|_{\mathrm{c}}=\|A(\alpha B)\|_{\mathrm{c}}$ for A, B in $\mathcal{F}_{m m}$ for any α in $[0,1]$
(vi) $\|\alpha(\beta A)\|_{\mathrm{c}}=\|(\alpha \beta) A\|_{\mathrm{c}} \mathrm{A}$ in $\mathcal{F}_{m m}$ for any $\alpha \beta$ in $[0,1]$

Proof:

(i) $\|A\|_{\mathrm{c}} \geq 0$ and $\|A\|_{\mathrm{c}}=0$ if and only if $A=0$

If $\|A\|_{\mathrm{c}}$ is a NSFM in $\mathcal{F}_{m m}$ since $\mathrm{a}_{\mathrm{ij}} \in[0,1]$ then $\|A\|_{\mathrm{c}} \geq 0$ for all in $\mathcal{F}_{m m}$
If $\|A\|_{\mathrm{c}}=0$ then $a_{i j}=0$ for all i and $j A=0$
Conversely if $A=0$ then $\|A\|_{\mathrm{c}}=0$
$\|A\|_{\mathrm{c}}=0 \quad$ if $A=0$.
(ii) $\|\alpha A\|_{\mathrm{c}}=\alpha\|A\|_{\mathrm{c}}$ for any α in $[0,1]$

If α in $[0,1]$ then $\|\alpha A\|_{\mathrm{c}}=\alpha\|A\|_{\mathrm{c}}$

$$
\begin{aligned}
\|\alpha A\|_{\mathrm{c}} & =\left[\alpha\left(a_{i j}\right)\right] \\
& =\alpha\left[a_{i j}\right]
\end{aligned}
$$

$$
=\alpha\|A\|_{\mathrm{c}}
$$

(iii) $\|A B\|_{\mathrm{c}} \leq\|A\|_{\mathrm{c}}{ }^{\prime}\|B\|_{\mathrm{c}}$ " for A, B in $\mathcal{F}_{m m}$

If $(i, j)^{\text {th }}$ entry of $A B=D$ then the entries of D are given by

$$
\begin{aligned}
d_{i j} & =\sum_{k=1}^{p} a_{i k}, b_{k j} \\
d_{i j} & =\sum_{k=1}\left\{\min \left(a_{i k}, b_{k j}\right)\right\} \\
d_{i j} & =\min \left(a_{i 1}, b_{j 1}\right)+\min \left(a_{i 2}, b_{j 2}\right) \ldots \ldots . \min \left(a_{i m},, b_{j n}\right)
\end{aligned}
$$

$\|A\|_{c}=\left[a_{i j}\right]$
$\|A\|_{\mathrm{c}}=\sum^{M}{ }_{j=1} a_{1 i} m_{1 i}$

$$
=a_{11} m_{11}+a_{12} m_{12}+\cdots+a_{1 m} m_{1 m}
$$

$\|B\|_{\mathrm{c}}=\sum^{M}{ }_{j=1} b_{1 i}, m_{1 i}$

$$
=b_{11} m_{11}+b_{12} m_{12}+\cdots+b_{1 m} m_{1 m}
$$

$D \leq \min \left\{\left[a_{i k}\right],\left[b_{k j}\right]\right\}$
$\|A B\|_{\mathrm{c}} \leq\|A\|_{\mathrm{c}^{\prime}} \mid\|B\|_{\mathrm{c}}{ }^{\prime \prime}$ for A, B in $\mathcal{F}_{m m}$
(iv) $\|A B\|_{\mathrm{c}}{ }^{\mathrm{T}} \leq\|B\|_{\mathrm{c}}{ }^{\mathrm{T}}\|A\|_{\mathrm{c}}{ }^{\mathrm{T}}$ for A, B in $\mathcal{F}_{m m}$

If $(i, j)^{\text {th }}$ entry of $(A B)^{\mathrm{T}}=D^{\mathrm{T}}$ then the entries of D^{T} are given $A^{\mathrm{T}}=a_{k i}, B^{\mathrm{T}}=b_{k j} ; \mathrm{A}^{\mathrm{T}}=p \times m, \mathrm{~B}^{\mathrm{T}}=m \times p$ by $d_{i j}=\sum_{k=1}^{p} b_{j k}, a_{i j}=\sum_{k=1}^{p} \min \left(b_{j k}, a_{k i}\right)$
$d_{i j}=\min \left(b_{i 1}, a_{j 1}\right)+\min \left(b_{i 2}, a_{j 2}\right) \ldots .+\min \left(b_{i n}, a_{j m}\right)$
$A^{\mathrm{T}}=a_{k i}$ order $p x m \quad B^{\mathrm{T}}=b_{j k}$ order $m x \neq$
$\|\mathrm{A}\|^{\mathrm{T}}{ }_{\mathrm{c}}=\sum_{j=1}^{M} a_{1 i}, m_{\mathrm{I}}=a_{11} m_{11}+a_{21} m_{21}+\cdots+a_{m 1} m_{m 1}$
$\|\mathrm{B}\|^{\mathrm{T}}{ }_{\mathrm{c}}=\sum_{j=1}^{M} b_{1 i} m_{1 i}=b_{11} m_{11}+b_{21} m_{21}+\cdots+b_{m 1} m_{m 1}$
$D^{\mathrm{T}}=\min \left\{\left(b_{j k}\right),\left(a_{k i}\right)\right\}$
$\|A B\|_{c}{ }^{\mathrm{T}} \leq\|B\|_{c}{ }^{\mathrm{c}} \mathrm{T}\|A\|_{\mathrm{c}}{ }^{\mathrm{T}}$ for A, B in $\mathcal{F}_{m m}$
(v) $\|\alpha(\mathrm{AB})\|_{\mathrm{c}}=\|(\alpha \mathrm{A}) \mathrm{B}\|_{\mathrm{c}}=\|\mathrm{A}(\alpha \mathrm{B})\|_{\mathrm{c}} \quad \alpha$ in $[0,1], A=\left[a_{i j}\right], B=\left[b_{i j}\right]$
$\|\alpha(A B)\|_{c}=\alpha\left[a_{i j} b_{i j}\right]$

$$
=\left[\begin{array}{lll}
\alpha & a_{i j} & b_{i j}
\end{array}\right]
$$

$$
=\left[\begin{array}{ll}
\alpha & a_{i j}
\end{array}\right] b_{i j}
$$

$$
=\|(\alpha A) B\|_{c}
$$

$$
=\left[\begin{array}{ll}
\alpha & a_{i j}
\end{array}\right] b_{i j}
$$

$$
=\left[a_{i j} \alpha\right] b_{i j}
$$

$$
=\left[a_{i j} \alpha b_{i j}\right]
$$

$$
=\left[a_{i j}\right]\left[\begin{array}{ll}
\alpha & b_{i j}
\end{array}\right]
$$

$$
=\|\alpha(A B)\|_{c}
$$

(vi) $\|\alpha(\beta A)\| c=\|(\alpha \beta) A\|_{c}$ If α, β in $[0,1], A=\left[a_{i j}\right]$

$$
\begin{aligned}
\alpha(\beta A) & =\alpha\left(\beta a_{i j}\right) \\
& =\left[\alpha \beta a_{i j}\right] \\
& =(\alpha \beta)\left(a_{i j}\right) \\
& =(\alpha \beta)\left[a_{i j}\right] \\
& =\|\alpha(\beta A)\|_{\mathrm{c}} .
\end{aligned}
$$

(A). Example :

Verify $\|A B\|_{\mathrm{c}} \leq\|A\|_{\mathrm{c}}{ }^{\prime}\|B\|_{\mathrm{c}}{ }^{\prime}$.

(xviii) Theorem :

Let A be a NSFM and A^{T} be the transpose of A. The multiple of A and A^{T} is equal to a square fuzzy matrix.
Then \| $A A^{T}\left\|_{\mathrm{c}} \neq\right\| A^{T} A \|_{\mathrm{c}}$

Proof:

$$
\begin{array}{ll}
|A|=\left[a_{i j}\right] \quad \mathrm{A}^{\mathrm{T}}=\left[a_{j i}\right] & \\
\left\|A A^{T}\right\|_{\mathrm{c}}=\sum_{j=1}^{n}\left\{\min \left(a_{i j}, a_{j i}\right)\right\} . & \text { [Square Fuzzy Matrix] } \\
\left\|A^{T} A\right\|_{\mathrm{c}}=\sum_{i=1}^{m}\left\{\min \left(a_{j i}, a_{i j}\right)\right\} . & \text { [Square Fuzzy Matrix] }
\end{array}
$$

(xix) Theorem :

If $\mathrm{n}=1$, the norms $\|\cdot\|_{c},\|\cdot\|_{c} ',\|\cdot\|_{c}$ " on $\mathcal{F}_{m}, \mathcal{F}_{m p}, \mathcal{F}_{p}$ respectively, are compatible if for all $A \epsilon \mathcal{F}_{m p}$ and $x \in \mathcal{F}_{p}$ Then $\|A x\|_{\mathrm{c}} \leq\|A\|_{\mathrm{c}^{\prime}}\|\bar{x}\|_{\mathrm{c}}{ }^{\prime \prime}$

Proof:

Let $\|A\|_{\mathrm{c}}$ ' be the $\operatorname{NSFM} \mathcal{F}_{m m}$ over $\mathcal{F}=[0,1]\|\bar{x}\|_{\mathrm{c}}$ " be the fuzzy norm vector then $\left[a_{i j}\right]$ is compatible the fuzzy norm vector $\|\bar{x}\|_{\mathrm{c}}$ " then $\|A x\|_{\mathrm{c}} \leq\|A\|_{\mathrm{c}}{ }^{\prime}\|\bar{x}\|_{\mathrm{c}} "$
Let A be $(m \times m)$ NSFM of $\mathcal{F}_{m m}$

```
\(\left.\left.\|\mathrm{Ax}\|=\| \begin{array}{cc}A_{1 p} & \bar{x}_{2 p} \\ {\underset{x}{x}}_{P} \\ \ldots & \ldots \\ \bar{x}_{2}\end{array}\right] \sum_{p=1}^{n}\left[a_{m p}\right]\left\|\bar{x}_{p}\right\|\right]\)
    \(A_{m p} \quad \bar{x}_{P}\)
            \(\left.\leq\left[a_{m p}\right]\left\|\bar{x}_{p}\right\|\right]\)
        \(\|A x\|_{\mathrm{c}} \leq\|\mathrm{A}\|_{\mathrm{c}}{ }^{\prime}\|\bar{x}\|_{\mathrm{c}}{ }^{\prime \prime}\)
```

Furthermore, the norm $\|.\|_{c}$ on \mathcal{F}_{m} compatible with the norm $\|.\|_{c}$ on $\mathcal{F}_{n n}$ if for $A \in \mathcal{F}_{n n}$ and $x \in \mathcal{F}_{n}$.
$\|A x\|_{\mathrm{c}} \leq\|A\|_{\mathrm{c}}{ }^{\prime}\|\bar{x}\|_{\mathrm{c}}$.

VI. Conclusion

In this paper new definition for the non-square fuzzy matrices and its properties are discussed in fuzzy environment. A numerical example is given to clarify the developed theory and the proposed non-square fuzzy matrix compaitable norm.

VII. References

[1] M. Arunkumar, S. Murthy and G. Ganapathy Determinant for Non-square matrices, An international Journal of mathematics Science \& engeering applications. Vol. 5, 2011, 389-401.
[2] M.Z. Ragab and E.G Emam, The determinant and adjoint of a square Fuzzy Matrix, An international journal of information Sciences-Intelligent Systems, Vol. 84, 1995, 209-220.
[3] A. Nagoor Gani, and G. Kalyani, On Fuzzy m-norm matrices, Bulletin of pure and applied sciences, 22E(1) (2003) 1-11.
[4] A. Nagoor Gani, and A.R Manikandan, On Fuzzy det-norm matrices, J. Math. Comput. Sci., 3(1), 2013, 233-241.
[5] A.R Meenakshi , Fuzzy Matrix theory and applications, Publishers, (2008)
[6] Denniss Bernstein, Matrix Mathematics theory , Facts and Formulas Second edition (2009). Pp.350-352
[7] A.K Shymal and Madhumangal Pal Triangular Fuzzy Matrices . Iranian Journal of Fuzzy systems, Vol. 4 (2007) 75-87.

$2^{\text {nd }}$ International Conference on

Mathematical Techniques and Applications (e-ICMTA-2021)

$\mathfrak{G e r l i f i c a t e ~}$

This is to certify that Dr./Mr./Ms. \qquad Dr: S. MALATHI, MASc, M.Phil_Ph.Ph.P. of

ATMAN COLLEGE OF ARTS AND SCIENCE FOR WOMEN, TRICHY \qquad has presented a paper in the International Conference on Mathematical Techniques and Applications (e-ICMTA- 2021) organized by Department of Mathematics held on $24^{\text {th }}$ to $26^{\text {th }}$ March 2021 at SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India. Title of the paper: \qquad Graceful labeling of F graph and mirror image of F graph \qquad

Coordinators Dr. E. P. Siva
Dr. Babuji Pullepu Dr. Saurabh Kumar Kattiyar

Convener Dr. A. Govindarajan

Signature Not Verified BALASUNDAPAM VAN 02.07.2024-1 $\mathrm{R}: 42$ Chairperson (School of Applied Sciences)
Dr. D. John Thiruvadigal

Dean, CET Dr. T. V. Gopal

SRM
INSTITUTE OF SCIENCE \& TECHNOLOGY
(Deemed to be University $u / s 3$ of UGC Act, 1956)

$2^{\text {nd }}$ International Conference on MATHEMATICAL TECHNIQUES AND APPLICATIONS
 (e-ICMTA-2021)

(Virtual mode)
$24^{\text {th }}-26^{\text {th }}$ March, 2021

PROCEEDINGS

Organized by
Department of Mathematics College of Engineering and Technology SRM Institute of Science and Technology Kattankulathur - 603203

In association with

W VISWA \& DEVJI ${ }^{\circ}$

Dr. A. Govindarajan, Dr. E. P. Siva, Dr. Bapuji Pullepu, Dr. Saurabh Kumar Katiyar

Paper ID:e-ICMTA-MS-210350

Steady- state concentrations of carbon dioxide absorbed into phenyl glycidyl ether solutions by Taylor series method

S.Vinolyn Sylvia ${ }^{1}$, L.Rajendran ${ }^{1}$
${ }^{1}$ Department of Mathematics, Academy of Maritime Education and Training, Chennai, Tamilnadu, India, 603112

In this paper, two coupled nonlinear differential equations related to carbon dioxide (CO_2) and phenyl glycidyl ether (PGE) concentrations are solved using the Taylor series method. This model has based a set of mixed boundary conditions for Dirichlet and Neumann. This method yields quick converging, easily computable, and efficiently verifiable approximate closed-form solutions. The effect of the parameters on the enhancement factor is also discussed. The analytical result is programmed using computer algebra packages like Maple. The numerical result is compared with the approximate solutions obtained by this method, and a satisfactory agreement has been noted.

Paper ID:e-ICMTA-MS-210351

Graceful labeling of F graph and mirror image of F graph

S. Malathi,
Department of Mathematics, AIMAN College of Arts and Science for Women, Trichy, Tamilnadu, India, 620021

A graph $G(V, E)$ is graceful, if there exists an injective map $f: V(G) \rightarrow\{0,1,2, \ldots, q\}$ such that its induced map $\mathrm{f}^{+}: E(G) \rightarrow\{1,2,3, \ldots, q\}$ is defined by $f^{+}(u v)=|f(u)-f(v)|$ for every edge $u v$ in G where f^{+}is injective. A graph G is called graceful if it admits a graceful labeling. In this paper, the graceful labeling for the F graph and its mirror image is obtained.

[^0]
[^0]: Signature Not Verified

 - Organised by Department of Mathematics, Faculty of $E \& T$, SRMIST, KTR. BALASUNDAPAM VANI

